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Abstract

An effective boundary condition (EBC) is introduced as a novel technique to predict
tsunami wave run-up along the coast and offshore wave reflections. Numerical
modeling of tsunami propagation at the coastal zone has been a daunting task
since high accuracy is needed to capture aspects of wave propagation in the more5

shallow areas. For example, there are complicated interactions between incoming
and reflected waves due to the bathymetry and intrinsically nonlinear phenomena
of wave propagation. If a fixed wall boundary condition is used at a certain shallow
depth contour, the reflection properties can be unrealistic. To alleviate this, we explore
a so-called effective boundary condition, developed here in one spatial dimension.10

From the deep ocean to a seaward boundary, i.e., in the simulation area, we model
wave propagation numerically over real bathymetry using either the linear dispersive
variational Boussinesq or the shallow water equations. We measure the incoming
wave at this seaward boundary, and model the wave dynamics towards the shoreline
analytically, based on nonlinear shallow water theory over sloping bathymetry. We15

calculate the run-up heights at the shore and the reflection caused by the slope.
The reflected wave is then influxed back into the simulation area using the EBC. The
coupling between the numerical and analytic dynamics in the two areas is handled
using variational principles, which leads to (approximate) conservation of the overall
energy in both areas. We verify our approach in a series of numerical test cases of20

increasing complexity, including a case akin to tsunami propagation to the coastline at
Aceh, Sumatra, Indonesia.

1 Introduction

Shallow water equations are widely used in the modeling of tsunamis since their
wavelengths (typically 200 km) are far greater than the depth of the ocean (typically25

2–3 km). Tsunamis also tend to have a small amplitude offshore, which is why they
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generally are less noticeable at sea. Therefore, linear shallow water equations (LSWE)
suffice as a simple model of tsunami propagation (Choi et al., 2011; Liu et al., 2009). On
the contrary, it turns out that the lack of dispersion is a shortcoming of shallow water
modeling when the tsunami reaches the shallower coastal waters on the continental
shelf, and thus dispersive models are often required (Madsen et al., 1991; Horrillo et5

al., 2006). Numerical simulations based on these linear models are desirable because
they involve a short amount of computation. However, as the tsunami approaches the
shore, shoaling effects cause a decrease of the wavelength and an increase of the
amplitude. Here, the nonlinearity starts to play a more important role and thus the
nonlinear terms must be included in the model. To capture these shoaling effects in10

more detail, a smaller grid size will be needed. Consequently, longer computational
times are required.

Some numerical models of tsunamis use nested methods with different mesh
resolution to preserve the accuracy of the solution near the coast area (Titov et al.,
2011; Wei et al., 2008). While other models employ an impenetrable vertical wall at a15

certain depth contour as the boundary condition. Obviously, the reflection properties
of such a boundary condition can be unrealistic. We therefore wish to alleviate this
shortcoming by an investigation of a so-called effective boundary condition (EBC)
(Kristina et al., 2012), and also take into account the run-up case. In one horizontal
spatial dimension, an outline of the desired mathematical modeling is sketched in20

Fig. 1. In the deep ocean for x ∈ [B,L] with horizontal coordinate x and seaward
boundary point x = B, denoted as the simulation area, we model the wave propagation
numerically using linear model. In the coastal zone for x ∈ [xs(t),B] with shoreline
position xs(t) < B, denoted as the model area, we model the wave propagation
analytically using nonlinear model by approximating the bathymetry as a planar beach.25

We calculate the run-up heights at the shore and the reflection caused by the slope.
The reflected wave is then influxed back into the simulation area using the EBC. The
coupling between the numerical and analytic dynamics in the two areas is handled
using variational principles, which leads to (approximate) conservation of the overall
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energy in both areas. Following Kristina et al. (2012), an observation and influx operator
are defined at x = B to measure the incoming wave signal and influx the reflected wave,
respectively.

The shoreline position and wave reflection in the model area (sloping region) are
determined using an analytical solution of the nonlinear shallow water equations5

(NSWE) following the approach of Antunono and Brocchini (2010) for unbroken waves.
The novelty of our approach is the utilization of an observation operator at the boundary
x = B to calculate the incoming wave elevation towards the shore from the numerical
solution of the LSWE in the simulation area. For any given wave profile and bathymetry
in the simulation area, the numerical solution can be calculated and the signal arriving10

at x = B can be observed. Afterwards, the data are used to calculate the analytical
solution of the NSWE in the onshore region and the reflected waves. This is an
enhancement compared to the work in Antunono and Brocchini (2010) and Madsen
and Schaffer (2010), in which the solution of the KdV equation is used for a wave
traveling over flat bathymetry, to define the incoming wave signal at x = B.15

A rapid method to estimate tsunami run-up heights is also suggested by Choi et
al. (2011, 2012) by imposing a hard-wall boundary condition at x = B. Giving the
water wave oscillations at this hard wall at x = B, the maximum run-up height of
tsunami waves at the coast is subsequently calculated in separation by employing a
linear approach. It is claimed that the linear and nonlinear theories predict the same20

maximal values for the run-up height if the incident wave is determined far from the
shore (Synolakis, 1987). In contrast, Li and Raichlen (2001) shows that there is a
difference in the maximum run-up prediction between linear and nonlinear theory. In
addition to calculating only the maximum run-up height as in Choi’s method, our EBC
also includes the calculation of reflected waves. Thus, the point-wise wave height25

in the whole domain (offshore and onshore area) is predicted accurately. For the
inundation prediction, we have verified that the method introduced by Choi et al. (2011,
2012) performs as well as our EBC method, while the reflection wave comparisons
show larger discrepancies due to the usage of hard-wall boundary condition. The
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interaction between incoming and reflected waves needs to be predicted accurately
since subsequent waves may cause danger at later times.

A determination of the location of the seaward boundary point x = B is another issue
that must be addressed. Choi et al. (2011) put the impermeable boundary conditions
at a 5–10 m depth contour. In comparison, Didenkulova and Pelinovsky (2008) show5

that their run-up formula for symmetric waves gives optimal results when the incoming
wave signal is measured at a depth that is two-thirds of the maximum wave height. We
determine the location of this seaward boundary as the point before the nonlinearity
effect arises, and examine the dispersion effect at that point as well. Considering the
simple KdV equation (Mei, 1989), the measures of nonlinearity and dispersion are10

given by the ratios δ = A/h and µ2 = (kh)2, for the wave amplitude A, water depth h,
and wavenumber k. Provided with the information of the initial wave profile, we can
calculate the amplification of the amplitude and the decrease of the wavelength in a
linear approach, and thereafter estimate the location of the EBC point.

The numerical solution in the simulation area is based on a variational finite element15

method (FEM). In order to verify the EBC implementation that employs analytical
solution, we also numerically simulate the NSWE in the model area using a finite
volume method (FVM). Both cases are coupled to the simulation area to compare
the results. Our EBC in this article will be derived in one spatial dimension for
reasons of simplicity and clarity of exposure. In Sect. 2, we introduce the linear20

variational Boussinesq model (LVBM) and shallow water equations (SWE), both linear
and nonlinear, from their variational principles. The coupling conditions required at
the seaward boundary point are also derived here. The solution of the NSWE using
a method of characteristics is shown in Sect. 3, which includes the solution of the
shoreline position. In Sect. 4, the effective boundary condition is derived required to25

pinpoint the coupling conditions derived between the finite element simulation area
and the model area. Numerical verification is shown in Sect. 5, and we conclude in
Sect. 6.
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2 Water wave models

Our primary goal is to model the water wave motion to the shore analytically, instead
of resolving the motion in these shallow regions numerically. We therefore introduce an
artificial, open boundary at some depth and wish to determine an effective boundary
condition at this internal boundary. To wit, for motion in a vertical plane normal to the5

shore with one horizontal dimension, this artificial boundary is placed at x = B while the
real (time-dependent) boundary lies at x = xs(t) with xs(t) < B. For example, land starts
where the total water depth h = h(x,t) = 0 at x = 0. This water line is time dependent
as the wave can move up and down the beach.

We will restrict attention to the dynamics in a vertical plane with horizontal and10

vertical coordinates x and z, respectively. Nonlinear, potential flow water waves are
succinctly described by variational principles of Luke (1967) and Miles (1977) as follows

0=δ

T∫
0

L
[
φ,Φ,η,xs

]
dt=δ

T∫
0

L∫
xs

φ∂tη−1
2
g
(

(h+b)2−b2
)
−

η∫
−hb

1
2
|∇Φ|2dz

dxdt (1)

with velocity potential Φ=Φ(x,z,t), surface potential φ(x,t) =Φ(x,z = η,t), where15

η = h−hb is the wave elevation and h = h(x,t) the total water depth above the
bathymetry b = −hb(x) with hb(x) the rest depth. Time runs from t ∈ [0,T ]; partial
derivatives are denoted by ∂t et cetera, the gradient in the vertical plane as ∇ =
(∂x,∂z)

T and the acceleration of gravity as g.
The approximation for the velocity potential Φ in Eq. (1) can be of various kind, but20

all are based on the idea to restrict the class of wave motions to a class that contains
the wave motions one is interested in (van Groesen, 2006; Cotter and Bokhove, 2010;
Gagarina et al., 2013).

Following Klopman et al. (2010), we approximate the velocity potential as follows

Φ(x,z,t) =φ(x,t)+ F (z)ψ(x,t) (2)25
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for a function F = F (z). Its suitability is determined by insisting that F (η) = 0 such that
φ is the potential at the location z = η of the free surface and satisfies the slip flow
condition at the bottom boundary z+hb(x) = 0. The latter kinematic condition yields
∂zΦ+∂xΦ∂xhb = 0 at z = −hb(x). For slowly varying bottom topography, this condition
is approximated by5

(∂zΦ)z=−hb(x) = F
′ (−hb)ψ = 0.

Substitution of Eq. (2) into Eq. (1) yields the variational principle for Boussinesq
equations as follows (Klopman et al., 2010)

0 = δ

T∫
0

L
[
φ,ψ ,η,xs

]
dt = δ

T∫
0

L∫
xs

(
φ∂tη−

1
2
g
(

(h+b)2 −b2
)
− 1

2
(η+hb) |∂xφ|210

− β̆∂xψ∂xφ− 1
2
ᾰ|∂xψ |2 − 1

2
γ̆ψ2

)
dxdt , (3)

where functions β̆(x), ᾰ(x), and γ̆(x) are given by

β̆(x) =

η∫
−hb

F dz, ᾰ(x) =

η∫
−hb

F 2dz, γ̆(x) =

η∫
−hb

(F ′)2dz . (4)

15

The shallow water equations (SWE) are derived with the assumption that the
wavelengths of the waves are much larger than the depth of the fluid layer so that
the vertical variations are small and will be ignored. In this case, there is no dispersive
effect. The velocity potential is approximated over depth by its value at the surface,
such that F (z) = 0. Hence, when β̆ = ᾰ = γ̆ = 0 in Eq. (3), the nonlinear shallow water20

equations are obtained as limiting system.
We a priori divide the domain into two intervals, x ∈ [B,L], where we model the wave

propagation linearly, and x ∈ [xs(t),B], where we keep the nonlinearity. Hereafter, we
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write φ̆ and η̆ for the linear variables and also the definitions of β̆, ᾰ, and γ̆ simplify
accordingly. Thus, our variational principle becomes

0 =δ

T∫
0

L
[
φ̆, ψ̆ , η̆,φ,η,xs

]
dt

= δ

T∫
0

 L∫
B

(
φ̆∂tη̆−

1
2
gη̆2 − 1

2
hb|∂xφ̆|2 − β̆∂xψ̆∂xφ̆− 1

2
ᾰ|∂xψ̆ |2 − 1

2
γ̆ψ̆2

)
dx (5a)

+

B∫
xs

(
φ∂tη−

1
2
g
(

(h+b)2 −b2
)
− 1

2
(η+hb) |∂xφ|2

)
dx

dt . (5b)5

We choose a parabolic profile function F (z;hb) = 2z/hb + z
2/h2

b, in which the
x dependence is considered to be parametric when total water depth h is sufficiently
slowly varying. Consequently,

ᾰ = ᾰ(x) =

0∫
−hb

F 2dz =
8
15
hb ,10

β̆ = β̆(x) =

0∫
−hb

F dz = −2
3
hb ,

γ̆ = γ̆(x) =

0∫
−hb

(F ′)2dz =
4

3hb
. (6)
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The variations in Eq. (5) yield

0 = lim
ε→0

1
ε

T∫
0

L
[
φ̆+εδφ̆, ψ̆ +εδψ̆ , η̆+εδη̆,φ+εδφ ,η+εδη,xs +εδxs

]
−L
[
φ̆, ψ̆ , η̆,φ,η,xs

]
dt (7a)

=

T∫
0

 L∫
B

((
∂tη̆+∂x

(
hb∂xφ̆

)
+∂x

(
β̆∂xψ̆

))
δφ̆−

(
∂tφ̆+gη̆

)
δη̆

+
(
∂x (ᾰ∂xψ̆)+∂x

(
β̆∂xφ̆

)
− γ̆ψ̆

)
δψ̆
)

dx5

+ (hb∂xφ̆+ β̆∂xψ̆)δφ̆|x=B + (ᾰ∂xψ̆ + β̆∂xφ̆)δψ̆ |x=B

+

B∫
xs

(
(∂tη+∂x ((η+hb)∂xφ))δφ−

(
∂tφ+gη+

1
2
∂2
xφ
)
δη
)

dx

− (η+hb)∂xφδφ|x=B + (φδη)|x=xs

dxs

dt
− (φ∂tη)|x=xs

δxs

]
dt, (7b)

where we used endpoint conditions δη(0) = δη(T ) = 0, no-normal through flow10

conditions at x = L and h (xs(t),t) = 0. Since the variations are arbitrary, the linear
equations emerging from Eq. (7b) for x ∈ [B,L] are as follows

∂tφ̆+gη̆ = 0, (8a)

∂tη̆+∂x
(
hb∂xφ̆

)
+∂x

(
β̆∂xψ̆

)
= 0 (8b)

∂x (ᾰ∂xψ̆)+∂x
(
β̆∂xφ̆

)
− γ̆ψ̆ = 0 (8c)15
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and for x ∈
[
xs(t),B

]
, we get the nonlinear equations of motion

∂tφ+gη+
1
2
∂2
xφ = 0, (9a)

∂tη+∂x ((η+hb)∂xφ) = 0. (9b)

The last two terms in Eq. (7b) are the boundary terms at x = xs. They can be rewritten5

as follows
T∫

0

[
(φδη) |x=xs

dxs

dt
− (φ∂tη) |x=xs

δxs

]
dt=

T∫
0

[(
−φ∂x (η+hb)

dxs

dt
−φ∂tη

)
δxs

]
x=xs

dt, (10)

since the total depth h(xs,t) = η(xs,t)+hb(xs) = 0 at the shoreline boundary. Therefore,
we have the relation 0 = δh (xs,t) = δh+∂xhδxs = δη+∂x (η+hb)δxs. Substituting10

Eq. (9b) into (10), the boundary condition at the shoreline is

dxs

dt
= ∂xφ at x = xs(t) , (11)

i.e., the velocity of the shoreline equals the horizontal velocity of the fluid particle. The
underlined terms in Eq. (7b) apply at the seaward point, where we want to derive the15

coupling of effective boundary conditions. To derive the condition for the linear model,
the goal is to write these terms using the variations δφ̆ and δψ̆ . Because the depth-
averaged shallow water equations are considered, we have

φ(x,t) = Φ̄(x,t) =
1
hb

0∫
−hb

Φ(x,z,t)dz = φ̆+
β̆
hb
ψ̆ , (12)

20

where the last equality arises from approximation (2) for the velocity potential. Thus,
the variation of δφ becomes

δφ = δφ̆+
β̆
hb
δψ̆ .

326

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/317/2014/npgd-1-317-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/317/2014/npgd-1-317-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
1, 317–369, 2014

EBC conditions for
tsunami wave run-up

over sloping
bathymetry

W. Kristina et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Substituting this into Eq. (7b), we get the coupling condition at x = B for the linear
model as follows

hb∂xφ̆+ β̆∂xψ̆ = h∂xφ (13a)

ᾰ∂xψ̆ + β̆∂xφ̆ =
β̆
hb
h∂xφ (13b)

5

To derive the condition for the nonlinear shallow water model, we use the approximation
for the velocity potential (2) again. Since F (z = η) = 0 at the surface we haveφ = φ̆ and
thus δφ = δφ̆. From Eq. (7b), the coupling condition for nonlinear model is given by

h∂xφ = hb∂xφ̆+ β̆∂xψ̆ . (14)
10

The coupling conditions (13)–(14) will be used to transfer the information between
the two domains. In the simulation area, the boundary condition is used to influx the
reflected wave in a FEM simulation, while in the model area this coupling condition is
used in the analytical solution of the finite volume simulation (FVM). The finite volume
implementation is shown in the Appendix A.15

3 Nonlinear shallow water equations

3.1 Characteristic form

We will start with the NSWE in the shore region. Using η = −hb+h and velocity u = ∂xφ,
we may rewrite Eq. (9) as follows (starred variables are used here for later convenience)

20

∂t?h
? +∂x? (h?u?) = 0 (15a)

∂t?u
? +u?∂x?u

? = −g?∂x?(−h?b +h
?). (15b)
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The dimensionless form of Eq. (15) for a still water depth hb∗ = γ
?x? (where γ? =tan θ

is the beach slope) is obtained by using the scaling factors (Brocchini and Peregrine,
1996):

h =
h∗

h0
, u =

u∗

u0
, x =

x∗

l0
, t =

t∗

t0
, (16)

5

in which h0 is the still water depth at the seaward boundary and u0, l0, and t0 are
defined below as

u0 =

√
g?h0

g
, l0 =

h0γ
γ?

, t0 =
γ
γ?

√
gh0

g?
, (17)

where g = 1 and γ = 1 are dimensionless gravity acceleration and beach slope,10

respectively. The NSWE in dimensionless form are then given by

∂th+∂x (hu) = 0 (18a)

∂tu+u∂xu = gγ −g∂xh. (18b)

15

The asymptotic solution of this system of equations for wave propagation over
sloping bathymetry has been given for several initial-value problems using a
hodograph transformation (Carrier and Greenspan, 1957; Pelinovsky and Mazova,
1992; Synolakis, 1987), also for the boundary-value problem (Antuono and Brocchini,
2007; Li and Raichlen, 2001; Madsen and Schaffer, 2010) that will be used in this20

article. Since the system is hyperbolic, it has the following characteristic forms

dα
dt

= 0 on
dx
dt

= u−c (19a)

dβ
dt

= 0 on
dx
dt

= u+c, (19b)
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in which c =
√
gh and

α = 2c−u+gγt, β = 2c+u−gγt. (20)

Variables α and β are the so-called Riemann invariants since they do not change their
value along the characteristics curves in Eq. (19). Assuming the flow to be subcritical5

(that is |u| < c), the first characteristics curves with u−c < 0 are called “incoming” since
they propagate signals towards the shore. The second ones with u+c > 0 are called
“outgoing” since they move towards the deeper waters (carrying information on the
wave reflection at the shoreline).

3.2 A trivial solution of characteristic curve10

In the trivial case of no motion (u = η ≡ 0) as well as the dynamic case presented later,
we focus on the incoming characteristic curve. In the rest case, it is given by

dx
dt

= −
√
gγx. (21)

For x 6= 0, substituting y =
√
gγx results in the general solution for variable y as follows15

y = −1
2
gγt+C2,

with a constant C2. When the curve intersects x = B at time τ, with h0 the depth at
x = B, such that h0 = γB and y(B) =

√
gγB = c0, the particular solution is given by

y =
2c0 −gγ(t− τ)

2
.20

In case of no motion, the boundary data α = α0(τ) and β = β0(τ) are as follows

α0 = 2c0 +gγτ, β0 = 2c0 −gγτ. (22)
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Transforming back to the x variable, while using these expressions, we get the incoming
characteristic curve

x =
1

4gγ
(gγt−α0)2 =

gγ(2ω− (t− τ))2

4
(23)

with ω = c0/(gγ). Along this characteristic curve, the Riemann invariant is constant.5

Figure 2 shows the characteristic curves of the dimensionless NSWE over sloping
bathymetry b(x) = −x for x ∈ [0,1] and LSWE over flat bathymetry h0 = 1, B = 1 for
x ∈ [1,2]. As in our previous paper (Kristina et al., 2012), the characteristic curve of the
LSWE are given by dx/dt = ±c0. The “incoming” and “outgoing” characteristic curves
are shown by the solid and dashed lines respectively.10

For each characteristic curve (23), the location of the shoreline can be determined by
looking for the τ = τs for which the characteristic reaches the shoreline position, here
x = 0, at time t. It is given by the condition

∂x
∂τ

= 0 so that τs = t−2ω. (24)
15

As displayed in Fig. 2, the incoming characteristic curves that reach the shoreline at
time t, intersect x = B = 1 at time τ = t−2 (ω = 1 in this case). Since u = 0 in the rest
case, the boundary condition (11) is of course satisfied.

3.3 Boundary Value Problem (BVP)

Li and Raichlen (2001) and Synolakis (1987) combine linear and nonlinear theory to20

reduce the difficulties in the assignment of the boundary data for solving the BVP
problem in the NSWE. Later, it is shown that the proper way to solve the assignment
problem without using linear theory at all is not given in terms of η or u (both are shown
to be ill posed; Antuono and Brocchini, 2007) but in terms of the incoming Riemann
variable α. Antunono and Brocchini (2010) use this incoming Riemann variable as25
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boundary data and solve the dimensionless NSWE by direct use of physical variables
instead of using the hodograph transformation introduced by Carrier and Greenspan
(1957).

Given the data of η and u at the seaward boundary x = B, ∀t ∈R (see Fig. 1), we
want to find a solution of the NSWE in the sloping region to the shoreline including the5

reflected waves traveling back into the deeper waters. In accordance to the previous
trivial case, the initial time where a characteristic meets x = B is labeled as τ and
we write x = χ (t,τ), so we have the data α = α0 ≡ 2c(B,τ)−u(B,τ)+gγτ along the
incoming characteristic curves and β = β0 ≡ 2c(B,τ)+u(B,τ)−gγτ along the outgoing
characteristic curves. Then we can rewrite Eq. (19) as10

α = α0 on curves such that χt = u−c =
β−3α0

4
+gγt (25a)

β = β0 on curves such that χt = u+c =
3β0 −α

4
+gγt, (25b)

which means that the boundary values are carried by the incoming and outgoing
characteristic curves. To be concise, we write χt = ∂tχ and χτ = ∂τχ . Our aim is to15

obtain a closed equation for the dynamics and we focus on the incoming characteristic
by fixing α = α0. We can rewrite Eq. (25a) as follows

β = 3α0 +4(χt −gγt). (26)

Here β = β(χ ,t) since we are moving along an incoming characteristic curve. By taking20

the total t derivative of β, we obtain

dβ
dt

= βt +βxχt = βt +
(
β−3α0

4
+gγt

)
βx = 4(χtt −gγ) , (27)

in which the last equality comes from Eq. (26). In addition, the τ-derivative of Eq. (26)
gives25

∂β
∂τ

= βxχτ = 3α̇0 +4χtτ ⇒ βx =
3α̇0 +4χtτ

χτ
. (28)
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We still need an explicit expression for βt which can be obtained by rewriting Eq. (19b)
in the following way

βt +
(

3β−α0

4
+gγt

)
βx = 0. (29)

Combining Eqs. (27)–(29), we get the following differential equation for the incoming5

characteristic curves:

2χτ(χtt −gγ) = (4χtτ +3α̇0) (gγt−α0 − χt) for t > τ. (30a)

with boundary conditions

χ |t=τ = B (30b)10

χτ |τ=τs
= 0. (30c)

The second boundary condition is the shoreline boundary condition. We have 4c =
α+β from Eq. (20), which implies β = −α at the shoreline c = 0. Using Eq. (26), we
note that 4c = α0+β = 4(α0+χt−gγt) = 0 at the shoreline. Hence, the right-hand-side15

of Eq. (30a) is zero, such that for consistency χτ must be zero at the shoreline since
generally χtt 6= gγ.

3.3.1 Perturbation expansion

Due to the nonlinearity in χ , we use a perturbation method to solve Eq. (30). We expand
it in perturbation series around the rest solution (23) with a small parameter ε = A/h020

(A is the wave amplitude):

α0 =α0,0 +εα0,1 +O(ε2), (31a)

χ =χ (0) +εχ (1) +O(ε2), (31b)

τs =τ0(t)+ετ1(t)+O(ε2). (31c)
25
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in which α0,0 = 2c0 +gγτ is the incoming Riemann invariant in case of no motion, χ (0)

is given by Eq. (23), and τ0 = t−2ω. By substituting Eq. (31) into Eq. (30), we obtain
at first order in ε:

(2ω− t+ τ)
(
χ (1)
tt +2χ (1)

tτ

)
−
(
χ (1)
τ − χ (1)

t −α0,1

)
+

3
2

(2ω− t+ τ) α̇0,1 =0, (32a)

χ (1)
t=τ =0, (32b)5

χ (0)
ττ (t,τ0)τ1 + χ

(1)
τ (t,τ0) =0. (32c)

By letting Υ(1) = χ (1) − (2ω− t+ τ)α0,1/2, we can rewrite Eq. (32a) as

(2ω− t+ τ)
(
Υ(1)
tt +2Υ(1)

tτ

)
−Υ(1)

τ +Υ(1)
t = 0. (33)

10

Then, we make the change of variables ν = −(2ω− t+ τ) and ξ = τ, and Eq. (33)
becomes

ν
(

2Υ(1)
νξ −Υ(1)

νν

)
−2Υ(1)

ν +Υ(1)
ξ = 0. (34)

Denote the Fourier transform F (·) with respect to ξ15

ρ(1)(ν,s) = F
(
Υ(1)(ν,ξ)

)
(s) =

∞∫
−∞

Υ (ν,ξ)e−isξdξ , (35)

we obtain from Eq. (34) a differential equation related to a Bessel equation:

ν
(

2isρ(1)
ν −ρ(1)

νν

)
−2ρ(1)

ν + isρ(1) = 0, (36)
20

which has general solution

ρ(1)(ν,s) = eisν
(
A1(s)

[
J0(sν)− iJ1(sν)

]
+A2(s)

[
iY0(sν)+ Y1(sν)

])
(37)
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with J0,1 and Y0,1 the Bessel functions of the first and second kind. To recover Υ(ν,ξ),
we just need to take the inverse Fourier transform of Eq. (37), and by using Υ(1) =
χ (1) + να0,1/2, we get

χ (1) (ν,ξ) =
1

2π

∞∫
−∞

eis(ν+ξ) (A1(s)
[
J0(sν)− iJ1(sν)

]
+A2(s)

[
iY0(sν)+ Y1(sν)

])
ds− ν

2
α0,1 (38)

5

with ξ = τ ≤ t.

3.3.2 Boundary value assignment

In order to calculate the unknown function A1(s) and A2(s), we need to assign
the boundary conditions (30). In (ν,ξ) space, t = τ corresponds to ν = −2ω, and by
imposing the first boundary condition, we get10

−F
(
α0,1
)
ωe2isω = A1(s)

[
J0 (2sω)+ iJ1 (2sω)

]
+A2(s)

[
iY0 (2sω)− Y1 (2sω)

]
. (39)

The second boundary condition is given by Eq. (32c) in which

χ (1)
τ =− χ (1)

ν + χ (1)
ξ =

i
2π

∞∫
−∞

eis(ν+ξ)
(
A1(s)

[
sJ0(sν)− isJ1(sν)−

J1(sν)
ν

]

+A2(s)
[
isY0(sν)+ sY1(sν)+

Y1(sν)
iν

])
ds+

α0,1

2
−
να̇0,1

2
, (40)15

evaluated at τ = τ0, i.e., ν = 0 needs to be finite. Evaluating Eq. (40) at ν = 0 gives us
convergence when the coefficient A2(s) is zero, which avoids an unbounded result.
Hence, from the first boundary condition (34), coefficient A1(s) is given by

A1(s) = −
F (α0,1)ωe2isω

J0(2sω)+ iJ1(2sω)
. (41)20
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Thus, the solution of incoming characteristic curves at the first order is given by

χ (1)(ν,ξ) = − 1
2π

∞∫
−∞

eis(ν+ξ+2ω)ωF
(
α0,1
) J0(sν)− iJ1(sν)

J0(2sω)+ iJ1(2sω)
ds− ν

2
α0,1 . (42)

The shoreline position must satisfy χτ |τ=τs
= 0, and in the first order approximation it

is given by5

xs(t) = χ (0) (t,τ0)+ε
[
χ (0)
τ (t,τ0)τ1 + χ

(1) (t,τ0)
]
+O
(
ε2
)

. (43)

Since τ = τ0 corresponds with ν = 0 and ξ = t−2ω, we get

xs(t) = −F −1
[
F
(
α0,1
) ω
J0 (2sω)+ iJ1 (2sω)

]
. (44)

10

4 Effective boundary condition

4.1 Finite element implementation

The region x ∈ [B,L] will be approximated using a classical Galerkin finite element
expansion. We use first order spline polynomials on N elements with j = 1, . . . ,N +1
nodes. The variational structure is simply preserved by substituting the expansions15

φ̆h(x,t) =φj (t)ϕj (x), ψ̆h(x,t) = ψj (t)ϕj (x) , and η̆h(x,t) = ηj (t)ϕj (x) (45a)

into Eq. (5) for x ∈ [B,L] concerning N elements and (N +1) basis functions ϕj . We
used the Einstein summation convention for repeated indices.

To ensure continuity and a unique determination, we employ Eq. (12) and substitute20

φ(x,t) = φ̃(x,t)+φ1(t)ϕ1(x)+
β̃
hb
ψ1(t)ϕ1(x) and η(x,t) = η̃(x,t)+η1(t)ϕ1(x) (45b)
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with ϕ1 the basis function in element 0 for x ∈ [xs,B] and with φ̃(B,t) = η̃(B,t) = 0. For
linear polynomials, use of Eq. (45) into Eq. (5) yields

0 =δ

T∫
0

[
Mklφk η̇l −

1
2
gMklηkηl −

1
2

Sklφkφl −Bklψkφl −
1
2

Aklψkψl −
1
2

Gklψkψl

+

B∫
xs

(
φ∂tη−

1
2
gη2 − 1

2
h (∂xφ)2

)
dx

dt (46a)

=

T∫
0

[(
Mklη̇l−Sklφl−Bklψl

)
δφk−

(
Mklφ̇k+gMklηk

)
δηl− (Aklψl+Bklφl +Gklψl )δψk5

+

B∫
xs

(
(∂tη+∂x (h∂xφ))δφ̃−

(
∂tφ+gη+

1
2
∂2
xφ
)
δη̃
)

dx

+ (φδη) |x=xs

dxs

dt
− (φ∂tη) |x=xs

δxs

+

B∫
xs

((
∂tη+∂x (h∂xφ)

)
ϕ1δφ1 −

(
∂tφ+gη+

1
2
∂2
xφ
)
ϕ1δη1

)
dx

10

− h∂xφ|x=Bδφ1 −
β̃
hb
h∂xφ|x=Bδψ1

]
dt, (46b)

where we introduced mass and stiffness matrices Mkl, Skl, Akl, Bkl, Gkl, and used
endpoint conditions δηk(0) = δηk(T ) = 0, connection conditions δη̃(B,t) = δφ̃(B,t) =
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δψ̃(B,t) = 0, and no-normal through flow conditions at x = L. The matrices in Eq. (46)
are defined as follows

Mkl =

L∫
B

ϕkϕldx, Skl =

L∫
B

h∂xϕk∂xϕldx, Akl =

L∫
B

ᾰ∂xϕk∂xϕldx, Bkl =

L∫
B

β̆∂xϕk∂xϕldx,

and Gkl =

L∫
B

γ̆ϕkϕldx. (47)

5

Provided we let the size of the zeroth element go to zero such that the underline terms
in Eq. (46b) vanish, the equations arising from Eq. (46) are

Mklη̇l −Sklφl −Bklψl −δk1 (h∂xφ) |x=B− = 0 (48a)

Mklφ̇k +gMklηk = 0 (48b)

Aklψl +Bklφl +Gklψl −δk1

(
β̃
hb
h∂xφ

)
|x=B− = 0 (48c)10

with Kronecker delta symbol δkl (one when k = l and zero otherwise) and Eq. (9) for
x ∈ [xs,B] with boundary condition (11). Taking this limit does not jeopardize the time
step, as this zeroth element lies in the continuum region, in which the resolution is
infinite. The time integration is solved using ode45 in MATLAB that uses its internal15

time step.
From Eq. (48), we note that we need the depth h and the velocity u from the nonlinear

model at x = B, whose values are given at time t = τ in the characteristic space. The
definitions (20), while using α = α0 and β in Eq. (26) with expansions up to first order,
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yield

h =c2/g =
1

16g
(α0 +β)2

=
(
α0,0 + χ

(0)
t −gγt+ε

(
α0,1 + χ

(1)
t

))2
/g

=
(
α0,0 +

gγt−α0,0

2
−gγt+ε

(
α0,1 + χ

(1)
t

))2

/g

=
(
c0 +

1
2
gγ(τ − t)+ε

(
α0,1 + χ

(1)
t

))2

/g (49a)5

u =gγt+
1
2

(β−α0) = ε
(
α0,1 +2χ (1)

t

)
. (49b)

Note that for ε = 0, we indeed find the rest depth hb(x) = γx. The function χ (1)
t follows

from evaluation of Eq. (42) and since t = τ is equivalent to ν = −2ω, we immediately
obtain10

χ (1)
t |t=τ ≡ χ

(1)
ν (−2ω,ξ) = − i

4π

∞∫
−∞

eisξF
(
α0,1
) J1 (2sω)

J0 (2sω)+ iJ1 (2sω)
ds−

α0,1

2
. (50)

Thus, the solutions of h and u at t = τ are given as follows

h(B,t) =hb +η =
c2

0

g
+ε

c0

g
F −1

[
F
(
α0,1
) J0 (2sω)

J0 (2sω)+ iJ1(2sω)

]
(51a)

u(B,t) =−εF −1
[
F
(
α0,1
) iJ1 (2sω)

J0 (2sω)+ iJ1 (2sω)

]
. (51b)15
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In order to calculate the solution for h and u at x = B and the shoreline position, we
need the data of incoming Riemann invariants at the first order as follows

εα0,1 ≈ α−α0,0 = 2
(√

g(γB+ η̆)−
√
gγB

)
|x=B+ − ŭ|x=B+ , (52)

that is obtained by disregarding higher order terms in Eq. (31a). This expression5

is actually the incoming Riemann invariant in LSWE (Kristina et al., 2012). Thus,
in imposing the effective boundary condition (EBC) and choosing the location x = B
before the nonlinearity arises, actually we do the perturbation expansion to solve the
nonlinear area, but we do not perturb the incoming wave data.

The values η̆h and ŭ in Eq. (52) are obtained from the simulation area [B,L]. In this10

region, we only have the values of η̆, φ̆, and ψ̆ . The depth-averaged velocity u(B+,t)
is determined by using the approximation (12) as follows

ŭ = ∂xφ̆+
β̆
hb
∂xψ̆ at x = B+ , (53)

which is the limit from the right at node 1.15

The solutions of η = h−hb and u in Eq. (51) account for the reflected wave, so we
may define

η = ηI +ηR and u = uI +uR (54)

for ηI and ηR are the wave elevations of incoming and reflected wave respectively20

at x = B. Taking this superposition is actually in line with our EBC concept since the
linearity holds in the simulation area. To obtain the expression for the reflected wave,
we need to know the incoming one. Using the knowledge of incoming and outgoing
Riemann invariants in the LSWE as derived in Kristina et al. (2012), the observation
operator is given by25

O = hŭ+cη̆ = 2cηI , (55)
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which is calculated using approximation (53). Thus, we can calculate the incoming
wave elevation for any given wave signal at x = B. It is an enhancement from Antunono
and Brocchini (2010) and Madsen and Schaffer (2010) who use the solution of the
KdV equation for wave traveling over flat bathymetry to define the incoming wave
signal at x = B. Implementation of this observation operator allows us to have any initial5

waveform at the point of tsunami generation, and let it travel over the real bathymetry
to the seaward boundary point x = B. From Eq. (51), the expressions for the reflected
wave are as follows

ηR =M
(
ηI
)
=
c0

g
F −1

[
F
(
εα0,1

) J0 (2sω)

J0 (2sω)+ iJ1 (2sω)

]
−ηI (56a)

uR =M
(
uI
)
= −F −1

[
F
(
εα0,1

) iJ1 (2sω)

J0 (2sω)+ iJ1 (2sω)

]
−uI , (56b)10

with the Fourier transform and its inverse for any incoming wave signal is evaluated
using the FFT and IFFT functions in MATLAB.

The influxing operator is defined as the coupling condition in Eq. (48) to send NSWE
result to the simulation area. It is shown that we need the value of h∂xφ, and hence15

I = h∂xφ = (hb +η)u. (57)

In order to verify the EBC implementation, we perform numerical simulations with a
code that couples the LSWE in the simulation area with the NSWE in the model
area (Bokhove, 2005; Klaver, 2009). For numerical simulation of the LSWE, we use20

a finite element method, while for the NSWE we use a finite volume method. The
implementation of the finite volume method is explained in Appendix A.

5 Study case

Three test cases are considered. The first one is a synthetic one concerning a solitary
wave, such that we can compare with other results. Subsequently, we consider periodic25
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wave influx as the second case to test the robustness of the technique when there is
continuous interaction between the incoming and reflected wave. The third case is a
more realistic one concerning tsunami propagation and run-up based on simplified
bathymetry at the Aceh coastline.

The location of the EBC point is determined from the linearity condition δ = A0/h0 �5

1. From linear theory, the wave amplification over depth is given by the ratio A0 =

A 4
√
h/h0, where A and h are the initial wave amplitude and depth. Hence, the EBC

point must be located at depth

h0 �
5
√
A4h/δ4 . (58)

10

Since a dispersive model is also used in the simulation area, we will discuss the
dispersion effect at this EBC point as well. The non-dispersive condition is given by
µ2 = (k0h0)2 � 1, with k0 = 2π/λ0 is the wavenumber and λ is the wavelength. In linear
wave theory, the wavelength decreases with the square root of the depth when running

in shallower water, that is λ0 = λ
√
h0/h. Thus, using this relation we can investigate15

the significance of the dispersion given the information of the initial condition and
bathymetry profile.

5.1 Solitary wave

We study the run-up of a solitary wave by means of the well-known case studied by
Synolakis (1987). A solitary wave centered at x = x0 at t = 0 has the following surface20

profile:

η(x,0) = A sech2κ(x−x0)

for κ = 0.04, x0 = 150 m, and A = 0.1 m is the amplitude. The bathymetry is given by
constant depth 10m for x > 50 m, continued by a constant slope γ = 1/5 towards the25

shore. A uniform spatial grid ∆x = 1m is used in the simulation area and ∆x = 0.015 m
341
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in the model area for the numerical solution of the NSWE. In all cases, several spatial
resolutions have been applied to verify numerical convergence. For the time integration,
we use the fourth order ode45 solver that uses its own time step in MATLAB.

Evaluating Eq. (58) for δ = 0.02 � 1, the EBC point must be located at h0 � 3.3 m.
Accordingly, we choose this seaward boundary point at h0 = 10 m at the toe of the5

slope, that is at x = B = 50 m. Therefore, we divide the domain into the simulation area
for x ∈ [50,250] m and the model area for x ∈ [−5,50] m. In Fig. 3, we can see the initial
profile of the solitary wave. The dashed and dotted-dashed lines represent the coupling
of the linear model (LSWE or LVBM) with the NSWE, respectively, and the solid one
represents the linear model with an EBC implementation. The thick solid line is the10

sloping bathymetry. Comparisons between these two simulations at several time steps
can be seen in Fig. 4 (left: LSWE, right: LVBM). Comparing the left and right figures,
we can see that the wave is slightly dispersed in the LVBM. Because we have flat
bathymethy in this case, the dispersion ratio at the simulation area is constant and given
by µ2 = 0.39 < 1. Hence, it is shown the long waves propagate faster than the shorter15

ones in LVBM simulations. In Fig. 5, the shoreline position caused by this solitary wave
is shown with the dashed line for the coupled numerical simulation, and the solid one for
linear model with an EBC implementation. The paths of characteristic curves forming
the shoreline are also shown in this figure. We can see that the shoreline is formed
by the envelope of the characteristic curves. The result with the LVBM shows a lower20

run-up but higher run-down with some oscillations at later times.
For simulation until physical time t = 40 s, the computational time for the coupled

numerical solutions in both domains is 2.9 times the physical time for the LSWE and
3.1 times for the LVBM. While the computational time of simulation using an EBC only
takes 0.12 times the physical time for the LSWE and 0.05 times for the LVBM. Hence,25

we notice that the simulation with the EBC reduces the computational time significantly,
up to approximately 98 %, compared with the computational time in the whole domain.
The computational time for the LSWE with an EBC is slower than the one with LVBM
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and an EBC, because the internal time step of the ode45 time step routine in MATLAB
required a smaller time step dt (compared to the LVBM) to preserve the stability.

The shoreline movement of our result compare well with the one of Choi et al. (2011).
We can see the comparison in Fig. 6. The result of simulation with EBC implementation
is shown by solid line and the result of Choi is shown by the dashed one. The solution of5

Choi gives higher prediction for the shoreline, but it cannot follow the subsequent small
positive wave. It may be caused by neglecting the reflection wave and nonlinear effects
in their formulation. We also compare the free-surface profile for several time steps in
Fig. 7. The dashed and dotted-dashed lines represent the coupling of the LSWE with
the NSWE, the solid one represents the LSWE simulation with an EBC implementation,10

and the solid lines with “o” marker represents the LSWE simulation in the solution of
Choi. The thick solid line is the sloping bathymetry. The implementation of the hard-wall
boundary condition at x = B in Choi’s method causes that the point-wise wave height
in the whole domain cannot be predicted accurately. In this case, the effect of reflected
waves for shoreline movement prediction is small, but it may become important when15

a compound of waves arrives at the coastline.

5.2 Periodic wave

Using the same bathymetry profile as the first case, we influx a periodic wave at the
right boundary (x = L) with the profile:

η(L,t) = A sin
(
2πt/T

)
20

in which A = 0.05 m is the amplitude and period T = 20 s. A smoothened characteristic
function until t = 10 s is used in influxing this periodic wave. We use uniform spatial grid
∆x = 1 m in the simulation area and ∆x = 0.015 m in the model area for the numerical
solution of the NSWE.25

According to the solitary wave case, we also choose this seaward boundary point at
h0 = 10 m at the toe of the slope, that is at x = B = 50 m. Thus, the simulation area is for
x ∈ [50,250] m and the model area for x ∈ [−5,50] m. Comparisons between these two
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simulations at several time steps can be seen in Fig. 8 (left: LSWE, right: LVBM). The
dashed and dotted-dashed lines represent the coupling of the linear model (LSWE or
LVBM) with the NSWE, respectively, and the solid one represents the linear model with
an EBC implementation. The thick nearly vertical solid line on the left is the sloping
bathymetry. We can see in the comparison that the wave is slightly dispersed in the5

LVBM. The dispersion ratio at the simulation area is given by µ2 = 0.0986 < 1, which
is less dispersive than the first case. In Fig. 9, the shoreline movement caused by the
periodic wave is shown with the dashed line for the coupled numerical simulation, and
the solid one for linear model with an EBC implementation. The paths of characteristic
curves forming the shoreline are also shown in this figure by the thin lines. Observing10

the results of this case, we can conclude that the EBC technique can deal robustly with
consecutive interactions between incoming and reflected wave.

For simulation until physical time t = 80 s, the computational time for the coupled
numerical solutions in both domains is 2.76 times the physical time for the LSWE and
3.02 times for the LVBM. While the computational time of simulation using an EBC15

only takes 0.07 times the physical time for the LSWE and 0.06 times for the LVBM.
Obviously, we notice that the simulation with the EBC reduces the computational time
up to approximately 98 %, compared with the computational time for whole domain
simulation.

5.3 Simulation using simplified Aceh bathymetry20

The bathymetry near Aceh, Indonesia, is displayed in Fig. 10. Figure 10a concerns
bathymetry data from GEBCO, with zero value for the land. Figure 10b concerns the
cross section at (95.0278◦ E, 3.2335◦ N)–(96.6583◦ E, 3.6959◦ N) shown by the solid
line. The initial “N”-wave profile taken is

η(x,0) = Af (x)/S with f (x) =
d

dx
exp
(
−(x−x0)2/w0

2
)

and S = max(f (x)) (59)25
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and the initial velocity potential is zero. We take A = 0.4 m, the position of the wave
profile x0 = 107.4 km, and the width w0 = 35 km.

The location of the EBC point is also determined from Eq. (58). For δ = 0.02 � 1,
the linear model is valid for h0 � 25.1 m. Hence, we choose the EBC point at depth
h0 = 41.4 m, which is located at x = B = 12.4 km. Thus, the simulation area is for x ∈5

[12.4,162.4] km, where we follow the real bathymetry of Aceh to calculate the wave
propagation. It is coupled with the model area for x ∈ [−8.6,12.4] km, where a uniform
slope with gradient γ = 1/300 is used to calculate the reflection and shoreline position.

We use an irregular grid according to the depth with ratio
√
h0/h as the decrease

of the wavelength when traveling from a deep region with depth h and a shallower10

region with depth h0 in linear wave theory. The grid size used in the simulation area is
∆x = 305 m at the shallowest area near x = B. This choice of spatial resolution is fairly
close to tsunami numerical simulation (Horrillo et al., 2006 use ∆x = 100 m offshore
and ∆x = 10 m onshore in one dimensional simulations). For numerical solution of the
NSWE in the model area, a uniform grid ∆x = 3 m is used.15

In Fig. 11, we show the initial profile. The dashed and dotted-dashed lines again
represent the linear model coupled to the NSWE, and the solid one represents the
linear model with an EBC implementation at x = B = 12.4 km. The thick solid line is
the sloping bathymetry. Comparisons between these two simulations at several time
steps can be seen in Fig. 12. In this case, the wave elevation measured at B has20

been deformed from its initial condition due to the reflection from the bathymetry before
entering the model area, see Fig. 12a and b. We hardly see any differences between
the LSWE and LVBM simulations because the wavelength is much larger than the
depth. The dispersion ratio at the initial condition is given by µ2 = 0.002 � 1, and at
the EBC point is approximately µ2 = 7.5×10−5 � 1. Therefore, the dispersion effect is25

not significant in this case. In Fig. 13, the shoreline position is shown with the dashed
line for the coupled numerical simulation, and the solid one for the linear model with
the EBC implementation. From this plot, it is shown that the wave runs up 1 km in
the horizontal direction in approximately 10 min, roughly in the time interval from 50
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to 60 min. Paths of the characteristic curves are also shown in this figure. Again, we
observe that the shoreline is formed by the envelope of the characteristics.

For simulation until physical time t = 120 min, the computational time for the coupled
numerical solutions in both domains is 0.03 times the physical time for the LSWE and
0.03 times for the LVBM. While the computational time of simulation using an EBC only5

takes 0.003 times the physical time for the LSWE and 0.004 times for the LVBM. We
again notice that the simulations using the EBC reduce the computational times up to
approximately 92 % of the computational times with the coupled model in the entire
domain. In this case, the simulation with the LSWE is faster, as expected, since the
LVBM involves more calculations within the same time step.10

For the case when breaking occurs, we use the same profile with twice higher
amplitude (A = 0.8 m). In Fig. 14, the shoreline position is shown with the dashed
line for the coupled numerical simulation, and the solid one for the linear model with
the EBC implementation. Compared to the numerical NSWE solution, it can be seen
that the shoreline movement is well represented by the characteristic curves while the15

shoreline position xs(t) given by Eq. (44) gives a less accurate result. A breaking occurs
when two incoming characteristic curves intersect before reaching the shoreline. As
can be seen in the right figure, the first breaking is approximately at t = 45 min. The
corresponding free-surface profiles for several times before and after the breaking are
shown in Fig. 15.20

6 Conclusions

We have formulated a so-called effective boundary condition (EBC), which is used
as an internal boundary condition within a domain divided into simulation and model
areas. The simulation area from the deep ocean up to a certain depth at a seaward
boundary point at x = B is solved numerically using the linear shallow water equations25

(LSWE) and the linear variational Boussinesq model (LVBM). The nonlinear shallow
water equations (NSWE) are solved analytically in the model area from this boundary
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point towards the coastline over a simplified sloping bathymetry. The advantages of
using this EBC are the ability to measure the incoming wave signal at the boundary
point x = B for various shapes of incoming waves, and thereafter to calculate the wave
run-up and reflection from these measured data. To solve the tsunami wave run-up in
nearshore area analytically, we employ the asymptotic technique for solving the NSWE5

over sloping bathymetry derived by Antunono and Brocchini (2010), applied to any
given wave signal at x = B.

We have considered three test cases to verify our approach by comparing
simulations in the whole domain (using numerical solutions of the LSWE/LVBM coupled
to the NSWE) with ones using the EBC. The location of the boundary point x = B is10

considered before the nonlinearity plays an important role in the wave propagation.
The comparisons between both simulations show that the EBC method give a good
prediction of the wave run-up as well as the wave reflection, based only on the
information of the wave signal at this seaward boundary point. The computational times
needed in simulations using the EBC implementation show a large reduction compared15

to times required for corresponding full numerical simulations. Hence, without losing the
accuracy of the results, we could compress the time needed to simulate wave dynamics
in the nearshore area.

An extension of this EBC method to two dimensions (2-D) can be done in a direct
way by using the approach of Ryrie (1983). For waves incident at a small angle to20

the beach normal, the onshore problem can be calculated using the analytical 1-D
run-up theory of the nonlinear model, and independently the longshore velocity can
be computed asymptotically. By using a 2-D linear model in the open sea towards the
seaward boundary line (i.e., in the simulation area) and employing this approach in the
model area, we can in principle apply the EBC method for this 2-D case as well. This25

will be approximately valid for 2-D flow with slow variations along the EBC line.
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Appendix A

Finite volume implementation

The conservative form of NSWE are given by

∂u
∂t

+
∂f(u)

∂x
= s (A1)

5

with

u =
(
hu
h

)
f(u) =

(
hu2 + 1

2gh
2

hu

)
, (A2)

and the topographic term s

s =
(
−gh db/dx

0

)
. (A3)10

The system (A1) is discretized using a Godunov finite volume scheme. First the
domain [A,B], with some fixed A < xs(t) is partitioned into N grid cells with grid cell k
occupying xk− 1

2
< x < xk+ 1

2
. The Godunov finite volume scheme is derived by defining

a space-time mesh with element xk− 1
2
< x < xk+ 1

2
and tn < t < tn+1 and integrating15

Eqs. (A1) over this space-time element
xk+ 1

2∫
xk− 1

2

u (x,tn+1)dx−

xk+ 1
2∫

xk− 1
2

u (x,tn)dx=

tn+1∫
tn

f
(

u
(
xk− 1

2
,t
))

dt−
tn+1∫
tn

f
(

u
(
xk+ 1

2
,t
))

dt+

tn+1∫
tn

xk+ 1
2∫

xk− 1
2

s dxdt. (A4)

In the grid cells, we define the mean cell average Uk = Uk(t) as

Uk(t) :=
1
hk

xk+ 1
2∫

xk− 1
2

u(x,t)dx, (A5)20
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with cell length hk = xk+ 1
2
−xk− 1

2
. The function Uk is piecewise constant in each cell.

A numerical flux F is defined to approximate the flux f

F
(
Unk ,Unk+1

)
≈ 1

∆t

tn+1∫
tn

f
(

u
(
xk+ 1

2
,t
))

dt. (A6)

By using Eqs. (A5)–(A6), expression (A4) then becomes5

Un+1
k = Unk −

∆t
hk

(
F
(
Unk ,Unk+1

)
−F
(

Unk−1,Unk

))
+

1
hk

tn+1∫
tn

xk+ 1
2∫

xk− 1
2

s dxdt. (A7)

which is a forward Euler explicit method.
To ensure that the depth is non-negative and that the steady state of a fluid at rest

is preserving, the approach of Audusse (2004) is used. The numerical flux F is then10

defined as

F
(
Unk ,Unk+1

)
= Fk+ 1

2

(
Un

(k+ 1
2 )−

,Un
(k+ 1

2 )+

)
(A8)

where the interface values are given by

Un
(k+ 1

2 )−
=

(
h(k+ 1

2 )−uk
h(k+ 1

2 )−

)
and Un

(k+ 1
2 )+

=

(
h(k+ 1

2 )+uk+1

h(k+ 1
2 )+

)
. (A9)15

The topographic term s is discretized as

tn+1∫
tn

xk+ 1
2∫

xk− 1
2

s dxdt ≈ Sk = ∆t

(
1
2gh

2
(k+ 1

2 )−
− 1

2gh
2
(k− 1

2 )+

0

)
, (A10)
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with the waterdepths h(k+ 1
2 )− and h(k+ 1

2 )+ are chosen as follows to ensure non-negativity
of these depths

h(k+ 1
2 )− = max

(
hk +bk −bk+ 1

2
,0
)

, h(k+ 1
2 )+ = max

(
hk+1 +bk+1 −bk+ 1

2
,0
)

, (A11)

and5

bk+ 1
2
= max(bk ,bk+1). (A12)

The discretization of the shallow water equations thus reads

Un+1
k = Unk −

∆t
hk

(
Fk+ 1

2

(
Un

(k+ 1
2 )−

,Un
(k+ 1

2 )+

)
−Fk− 1

2

(
Un

(k− 1
2 )−

,Un
(k− 1

2 )+

))
+
∆t
hk
Sk . (A13)

10

The HLL flux (Harten et al., 1983; Toro et al., 1994) is used as the numerical flux. It is
given by

FHLL
k+ 1

2

=


FL if 0 < SL
SRFL−SLFR+SLSR(UR−UL)

SR−SL
if SL ≤ 0 ≤ SR

FR if 0 > SR

(A14)

The wave speed SL and SR are approximated as the smallest and largest eigenvalue15

at the corresponding node. To ensure the stability of this explicit scheme, a Courant–
Friedrichs–Lewy (CFL) stability condition per cell is used for all eigenvalues λp at each
Unk∣∣∣∣∆thk λp (Unk)

∣∣∣∣ ≤ 1. (A15)
20
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Appendix B

Coupled model

The finite element implementation of LSWE or LVBM uses linear polynomial for solving
φ, ψ , and η. While the finite volume implementation for NSWE approximates h and u
with a constant value. Since u = ∂xφ, the velocity of the two models are approximated5

with the same order of polynomials. By coupling both models, in simulation area we
can rewrite Eq. (48) as

Mklη̇l −Sklφl −Bklψl −δk1(hu)|x=B− = 0 (B1a)

Mklφ̇k +gMklηk = 0 (B1b)

Aklψl +Bklφl +Gklψl −δk1

(
β̃
hb
hu

)
|x=B− = 0. (B1c)10

In finite volume implementation, the boundary is inserted through the numerical flux at
x = B by using coupling condition (14) as follows(
hu
h

)
=
(
hb∂xφ̆+ β̆∂xψ̆

hb + η̆

)
. (B2)

15

Acknowledgements. We are pleased to acknowledge funding for Wenny Kristina from The
Netherlands Organization of Scientific Research (NWO), division Earth Sciences. The idea
to couple potential flow (dispersive) models in a simulation area with the full NSWE in the
onshore area came originally from the late Howell Peregrine and was used by Vijaya Ambati,
Onno Bokhove, and Frank Klaver (Klaver, 2009).20
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Fig. 1. At the seaward boundary x = B, we assign (η,u)-data, and we want to find a solution of
the NSWE on the sloping region near the shoreline.
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Fig. 2. Plot of the characteristic curves in case of no motion (η = u = 0) for the dimensionless
NSWE over sloping bathymetry b(x) = −x for x ∈ [0,1] and LSWE over flat bathymetry h0 = 1,
B = 1 for x ∈ [1,2]. The “incoming” and “outgoing” characteristic curves are shown by solid
and dashed lines, respectively. The shoreline x = 0 can be seen as the envelope of the
characteristic curves themselves.
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Kristina et al.: Effective Coastal Boundary Conditions for Tsunami Wave Run-Up over Sloping Bathymetry 9

η̆, φ̆, and ψ̆. The depth-averaged velocity u(B+, t) is deter-
mined by using the approximation (12) as follows

ŭ= ∂xφ̆+
β̆

hb
∂xψ̆ at x=B+, (53)590

which is the limit from the right at node 1.
The solutions of η = h−hb and u in (51) account for the

reflected wave, so we may define

η = ηI + ηR and u= uI +uR (54)

for ηI and ηR are the wave elevations of incoming and re-595

flected wave respectively at x=B. Taking this superposition
is actually in line with our EBC concept since the linearity
holds in the simulation area. To obtain the expression for the
reflected wave, we need to know the incoming one. Using the
knowledge of incoming and outgoing Riemann invariants in600

the LSWE as derived in Kristina et al. (2012), the observation
operator is given by

O = hŭ+ cη̆ = 2cηI , (55)

which is calculated using approximation (53). Thus, we can
calculate the incoming wave elevation for any given wave605

signal at x=B. It is an enhancement from Antunono and
Brocchini (2010) and Madsen and Schaffer (2010) who use
the solution of the KdV equation for wave traveling over flat
bathymetry to define the incoming wave signal at x=B. Im-
plementation of this observation operator allows us to have610

any initial waveform at the point of tsunami generation, and
let it travel over the real bathymetry to the seaward bound-
ary point x=B. From (51), the expressions for the reflected
wave are as follows

ηR =M(ηI) =
c0
g
F−1

[
F(εα0,1)

J0(2sω)

J0(2sω) + iJ1(2sω)

]
− ηI

(56a)

615

uR =M(uI) =−F−1
[
F(εα0,1)

iJ1(2sω)

J0(2sω) + iJ1(2sω)

]
−uI ,

(56b)

with the Fourier transform and its inverse for any incoming
wave signal is evaluated using the FFT and IFFT functions
in MATLAB.620

The influxing operator is defined as the coupling condi-
tion in (48) to send NSWE result to the simulation area. It is
shown that we need the value of h∂xφ, and hence

I = h∂xφ= (hb + η)u. (57)

In order to verify the EBC implementation, we perform nu-625

merical simulations with a code that couples the LSWE in the
simulation area with the NSWE in the model area (Klaver,
2009). For numerical simulation of the LSWE, we use a finite
element method, while for the NSWE we use a finite volume
method. The implementation of the finite volume method is630

explained in Appendix A.

0 50 100 150 200 250
−0.05

0

0.05

0.1

0.15

x [m]

η
(x

,t
) 

[m
]

Fig. 3. The initial condition is shown for: the NSWE (dotted-dashed
line) coupled to the linear model (dashed line), and the linear model
with the EBC implementation (solid line).

5 Study Case

Three test cases are considered. The first one is a synthetic
one concerning a solitary wave, such that we can compare
with other results. Subsequently, we consider periodic wave635

influx as the second case to test the robustness of the tech-
nique when there is continuous interaction between the in-
coming and reflected wave. The third case is a more realis-
tic one concerning tsunami propagation and run-up based on
simplified bathymetry at the Aceh coastline.640

The location of the EBC point is determined from the
linearity condition δ =A0/h0� 1. From linear theory, the
wave amplification over depth is given by the ratio A0 =
A 4
√
h/h0, where A and h are the initial wave amplitude and

depth. Hence, the EBC point must be located at depth645

h0� 5
√
A4h/δ4. (58)

Since a dispersive model is also used in the simulation
area, we will discuss the dispersion effect at this EBC point
as well. The non-dispersive condition is given by µ2 =
(k0h0)2� 1, with k0 = 2π/λ0 is the wavenumber and λ is650

the wavelength. In linear wave theory, the wavelength de-
creases with the square root of the depth when running in
shallower water, that is λ0 = λ

√
h0/h. Thus, using this re-

lation we can investigate the significance of the dispersion
given the information of the initial condition and bathymetry655

profile.

5.1 Solitary wave

We study the run-up of a solitary wave by means of the well-
known case studied by Synolakis (1987). A solitary wave
centered at x= x0 at t= 0 has the following surface profile:660

η(x,0) =A sech2κ(x−x0)

for κ= 0.04, x0 = 150m and A= 0.1m is the amplitude.
The bathymetry is given by constant depth 10m for x > 50m,
continued by a constant slope γ = 1/5 towards the shore. A
uniform spatial grid ∆x= 1m is used in the simulation area665

and ∆x= 0.015m in the model area for the numerical so-
lution of the NSWE. In all cases, several spatial resolutions

Fig. 3. The initial condition is shown for: the NSWE (dotted-dashed line) coupled to the linear
model (dashed line), and the linear model with the EBC implementation (solid line).
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Fig. 4. Free-surface profiles are shown for the coupled linear model (left: LSWE, right: LVBM)
with the NSWE (dashed and dotted-dashed lines), and for the linear model with an EBC
implementation (solid line), at times (a) t = 10 s, (b) t = 20 s, (c) t = 30 s, (d) t = 40 s.
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(a)

(b)

Fig. 5. The shoreline movement of the linear model (a: LSWE, b: LVBM) coupled to the NSWE
is shown by the dashed line, while the solid one is the shoreline movement of the linear model
simulation with an EBC implementation. Paths of the first-order characteristic curves are shown
by the thin lines.
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Fig. 6. Comparison of the shoreline movement of Choi et al. (2011) (dashed line) and LSWE
with EBC simulation (solid line) for solitary wave case.
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Fig. 7. Free-surface profiles are shown for the coupled LSWE with the NSWE (dashed and
dotted-dashed lines), for the LSWE with an EBC implementation (solid line), and for the LSWE
with Choi’s method (solid line with “o” marker) at times (a) t = 10 s, (b) t = 20 s, (c) t = 30 s,
(d) t = 40 s.
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Fig. 8. Free-surface profiles are shown for the coupled linear model (left: LSWE, right: LVBM)
with the NSWE (dashed and dotted-dashed lines), and for the linear model with an EBC
implementation (solid line), at times (a) t = 20 s, (b) t = 40 s, (c) t = 60 s, (d) t = 75 s.
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(a)

(b)

Fig. 9. The shoreline movement of the linear model (a: LSWE, b: LVBM) coupled to the NSWE
is shown by the dashed line, while the solid one is the shoreline movement of the linear model
simulation with an EBC implementation. Paths of the first-order characteristic curves are shown
by the thin lines.
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(a)

(b)

Fig. 10. Bathymetry near Aceh (a) and the cross section (b) at (95.0278◦ E, 3.2335◦ N)–
(96.6583◦ E, 3.6959◦ N). The solid line concerns the bathymetry data and the dashed line
concerns the approximation used in the simulations.
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Fig. 11. The initial condition is shown for the linear model coupled to the NSWE (dashed and
dotted-dashed lines) for the linear model with an EBC implementation (solid line).
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12 Kristina et al.: Effective Coastal Boundary Conditions for Tsunami Wave Run-Up over Sloping Bathymetry

For simulation until physical time t= 80s, the computa-
tional time for the coupled numerical solutions in both do-
mains is 2.76 times the physical time for the LSWE and 3.02765

times for the LVBM. While the computational time of simu-
lation using an EBC only takes 0.07 times the physical time
for the LSWE and 0.06 times for the LVBM. Obviously, we
notice that the simulation with the EBC reduces the compu-
tational time up to approximately 98%, compared with the770

computational time for whole domain simulation.

5.3 Simulation using simplified Aceh bathymetry

The bathymetry near Aceh, Indonesia, is displayed in Fig. 10.
The left figure concerns bathymetry data from GEBCO, with
zero value for the land. The right figure concerns the cross775

section at (95.0278oE, 3.2335oN)-(96.6583oE, 3.6959oN)
shown by the solid line. The initial“N–wave” profile taken
is

η(x,0) =Af(x)/S with f(x) =
d

dx
exp
(
−(x−x0)2/w0

2
)

and S = max
(
f(x)

)
(59)780

and the initial velocity potential is zero. We take A= 0.4m,
the position of the wave profile x0 = 67.4km, and the width
w0 = 35km.

Fig. 10. Bathymetry near Aceh (top) and the cross section (bottom)
at (95.0278oE, 3.2335oN)-(96.6583oE, 3.6959oN). The solid line
concerns the bathymetry data and the dashed line concerns the ap-
proximation used in the simulations.

The location of the EBC point is also determined from785

(58). For δ = 0.02� 1, the linear model is valid for h0�
25.1m. Hence, we choose the EBC point at depth h0 =
41.4m, which is located at x=B = 12.4km. Thus, the sim-
ulation area is for x ∈ [12.4,162.4]km, where we follow the
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Fig. 11. The initial condition is shown for the linear model coupled
to the NSWE (dashed and dotted-dashed lines) for the linear model
with an EBC implementation (solid line).
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Fig. 12. Free-surface profiles of simulations with the linear model
(left: LSWE, right: LVBM) coupled to the NSWE are shown by the
dashed and dotted-dashed lines, and of simulation for a linear model
with an EBC implementations are shown by the solid line at times
a) t= 800s, b) 1600s, c) 2700s, d) 3200s, e) 4000s, f) 5400s.

real bathymetry of Aceh to calculate the wave propagation. It790

is coupled with the model area for x ∈ [−8.6,12.4]km, where
a uniform slope with gradient γ = 1/300 is used to calculate
the reflection and shoreline position. We use an irregular grid
according to the depth with ratio

√
h0/h as the decrease of

the wavelength when traveling from a deep region with depth795

h and a shallower region with depth h0 in linear wave theory.
The grid size used in the simulation area is ∆x= 305m at the
shallowest area near x=B. This choice of spatial resolution
is fairly close to tsunami numerical simulation (Horrillo et al.
(2006) use ∆x= 100m offshore and ∆x= 10m onshore in800

one dimensional simulations). For numerical solution of the
NSWE in the model area, a uniform grid ∆x= 3m is used.

In Fig. 11, we show the initial profile. The dashed and
dotted-dashed lines again represent the linear model coupled

Fig. 12. Free-surface profiles of simulations with the linear model (left: LSWE, right: LVBM)
coupled to the NSWE are shown by the dashed and dotted-dashed lines, and of simulation for
a linear model with an EBC implementations are shown by the solid line at times (a) t = 800 s,
(b) 1600 s, (c) 2700 s, (d) 3200 s, (e) 4000 s, (f) 5400 s.
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Fig. 13. Shoreline movement of the linear model (top: LSWE, bot-
tom: LVBM) coupled to NSWE is shown by dashed line, while the
solid one is the shoreline movement of linear model simulation with
EBC implementation. Paths of the first order characteristic curves
are shown by thin lines.

to the NSWE, and the solid one represents the linear model805

with an EBC implementation at x=B = 12.4km. The thick
solid line is the sloping bathymetry. Comparisons between
these two simulations at several time steps can be seen in
Fig. 12. In this case, the wave elevation measured at B has
been deformed from its initial condition due to the reflec-810

tion from the bathymetry before entering the model area, see
panels a) and b). We hardly see any differences between the
LSWE and LVBM simulations because the wavelength is
much larger than the depth. The dispersion ratio at the ini-
tial condition is given by µ2 = 0.002� 1, and at the EBC815

point is approximately µ2 = 7.5× 10−5� 1. Therefore, the
dispersion effect is not significant in this case. In Fig. 13,
the shoreline position is shown with the dashed line for the
coupled numerical simulation, and the solid one for the lin-
ear model with the EBC implementation. From this plot, it is820

shown that the wave runs up 1km in the horizontal direction
in approximately 10min, roughly in the time interval from 50
to 60min. Paths of the characteristic curves are also shown in
this figure. Again, we observe that the shoreline is formed by
the envelope of the characteristics.825

For simulation until physical time t= 120min, the com-
putational time for the coupled numerical solutions in both
domains is 0.03 times the physical time for the LSWE and
0.03 times for the LVBM. While the computational time of
simulation using an EBC only takes 0.003 times the physical830

time for the LSWE and 0.004 times for the LVBM. We again
notice that the simulations using the EBC reduce the compu-
tational times up to approximately 92% of the computational
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Fig. 14. Shoreline movement (top) and an inset (bottom) of a break-
ing wave simulation. The linear model coupled to NSWE is shown
by dashed line, while the solid one is the shoreline movement of lin-
ear model simulation with EBC implementation. Paths of the first
order characteristic curves are shown by thin lines.

times with the coupled model in the entire domain. In this
case, the simulation with the LSWE is faster, as expected,835

since the LVBM involves more calculations within the same
time step.

For the case when breaking occurs, we use the same pro-
file with twice higher amplitude (A= 0.8m). In Fig. 14, the
shoreline position is shown with the dashed line for the cou-840

pled numerical simulation, and the solid one for the linear
model with the EBC implementation. Compared to the nu-
merical NSWE solution, it can be seen that the shoreline
movement is well represented by the characteristic curves
while the shoreline position xs(t) given by (44) gives a less845

accurate result. A breaking occurs when two incoming char-
acteristic curves intersect before reaching the shoreline. As
can be seen in the right figure, the first breaking is approxi-
mately at t= 45min. The corresponding free-surface profiles
for several times before and after the breaking are shown in850

Fig. 15.

6 Conclusions

We have formulated a so-called effective boundary condi-
tion (EBC), which is used as an internal boundary condi-
tion within a domain divided into simulation and model ar-855

eas. The simulation area from the deep ocean up to a certain
depth at a seaward boundary point at x=B is solved nu-
merically using the linear shallow water equations (LSWE)
and the linear variational Boussinesq model (LVBM). The
nonlinear shallow water equations (NSWE) are solved ana-860

(b)

Fig. 13. Shoreline movement of the linear model (a: LSWE, b: LVBM) coupled to NSWE is
shown by dashed line, while the solid one is the shoreline movement of linear model simulation
with EBC implementation. Paths of the first order characteristic curves are shown by thin lines.
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(a)

(b)

Fig. 14. Shoreline movement (a) and an inset (b) of a breaking wave simulation. The linear
model coupled to NSWE is shown by dashed line, while the solid one is the shoreline movement
of linear model simulation with EBC implementation. Paths of the first order characteristic
curves are shown by thin lines.
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Fig. 15. Free-surface profiles of simulations with the linear model coupled to the NSWE are
shown by the dashed and dotted-dashed lines, and of simulation for a linear model with an
EBC implementations are shown by the solid line at t =40–70 min.
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